Targeting miR-381-NEFL axis sensitizes glioblastoma cells to temozolomide by regulating stemness factors and multidrug resistance factors
نویسندگان
چکیده
MicroRNA-381 (miR-381) is a highly expressed onco-miRNA that is involved in malignant progression and has been suggested to be a good target for glioblastoma multiforme (GBM) therapy. In this study, we employed two-dimensional fluorescence differential gel electrophoresis (2-D DIGE) and MALDI-TOF/TOF-MS/MS to identify 27 differentially expressed proteins, including the significantly upregulated neurofilament light polypeptide (NEFL), in glioblastoma cells in which miR-381 expression was inhibited. We identified NEFL as a novel target molecule of miR-381 and a tumor suppressor gene. In human astrocytoma clinical specimens, NEFL was downregulated with increased levels of miR-381 expression. Either suppressing miR-381 or enforcing NEFL expression dramatically sensitized glioblastoma cells to temozolomide (TMZ), a promising chemotherapeutic agent for treating GBMs. The mechanism by which these cells were sensitized to TMZ was investigated by inhibiting various multidrug resistance factors (ABCG2, ABCC3, and ABCC5) and stemness factors (ALDH1, CD44, CKIT, KLF4, Nanog, Nestin, and SOX2). Our results further demonstrated that miR-381 overexpression reversed the viability of U251 cells exhibiting NEFL-mediated TMZ sensitivity. In addition, NEFL-siRNA also reversed the proliferation rate of U251 cells exhibiting locked nucleic acid (LNA)-anti-miR-381-mediated TMZ sensitivity. Overall, the miR-381-NEFL axis is important for TMZ resistance in GBM and may potentially serve as a novel therapeutic target for glioma.
منابع مشابه
High expression of miR-9 in CD133+ glioblastoma cells in chemoresistance to temozolomide.
Glioblastoma Multiforme (GBM), a uniformly lethal stage IV astrocytoma, is currently treated with a combination of surgical and radiation therapy as well as Temozolomide (TMZ) chemotherapy. Resistance to TMZ is rapidly acquired by GBM cells and overcoming this resistance has been an area of signi?cant research. GBM 'cancer stem cells' (CSC) also known as 'cancer initiating cells' are often posi...
متن کاملTargeted nanocomplex carrying siRNA against MALAT1 sensitizes glioblastoma to temozolomide
Intrinsic therapeutic resistance especially in cancer stem cells (CSCs) together with extensive tumor cell infiltration and restricted permeation of the blood-brain barrier (BBB) by drugs may all contribute to the treatment failure in patients with glioblastoma multiforme (GBM). Accumulating evidence suggests that long non-coding RNA (lncRNA), metastasis-associated lung adenocarcinoma transcrip...
متن کاملMicroRNA-132 induces temozolomide resistance and promotes the formation of cancer stem cell phenotypes by targeting tumor suppressor candidate 3 in glioblastoma
The prognosis of patients suffering from glioblastoma [also referred to as glioblastoma multiforme (GBM)] is dismal despite multimodal therapy. Chemotherapy with temozolomide may suppress tumor growth for a certain period of time (a few months); however, invariable tumor recurrence suggests that glioblastoma initiating cells (GICs) render these tumors persistant. Thus, the understanding of the ...
متن کاملc-Myc-miR-29c-REV3L signalling pathway drives the acquisition of temozolomide resistance in glioblastoma.
Resistance to temozolomide poses a major clinical challenge in glioblastoma multiforme treatment, and the mechanisms underlying the development of temozolomide resistance remain poorly understood. Enhanced DNA repair and mutagenesis can allow tumour cells to survive, contributing to resistance and tumour recurrence. Here, using recurrent temozolomide-refractory glioblastoma specimens, temozolom...
متن کاملMiR‐634 sensitizes glioma cells to temozolomide by targeting CYR61 through Raf‐ERK signaling pathway
Glioma is the most common intracranial malignant tumors, accounting for about 40% of intracranial tumors. Primary or secondary drug resistance is one of the main reasons for the failure of treatment. The oncogenic or tumor-suppressive roles of miR-634 have been revealed in different types of cancer. However, the role of miR-634 in glioma remains unknown and whether miR-634 could sensitize gliom...
متن کامل